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Preface

This is a user support document prepared to assist users of Echidna (and ASReml).

Echidna is available free for non-commercial use from www.EchidnaMMS.org where you
can also download this document.

Please send feedback to Dr Gilmour (arthur.gilmour@cargovale.com.au).

It is the glory of God to conceal a matter,
But the glory of kings is to search out a matter. 1

1Solomon, Proverbs 25:2
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1 Introduction: Variances and
Variance Components

1.1 Mean and Variance

The aim of this document is to provide a heuristic introduction to fitting linear mixed
models in ASReml and Echidna. We will loosely define terms such as population, mean,
variance, variance components, fixed and random effects.

When we collect data, we obtain a sample of values from a population. We may be
interested in the particular individuals sampled, or in understanding something about the
population. If our interest is the population, then we need to sample from the population
in an unbiased way.

In linear mixed models, we are particularly interested in the mean and the variance.
We will use minimal algebra but we need some. The mean, or expected value, will be
represented by µ (MU) and tells us the most likely value (although this value will probably
rarely be actually sampled). The variance tells us how variable the values are, the spread of
the sample values around the mean value) and will be represented by σ2 (Sigma squared).

These quantities will rarely ever be known but what we do know are a series of n sample
values, yi, i = 1, n.

The estimate of µ we typically use is µ̂ = Σn
i=1yi/n, the sum of our sample, divided by the

number of observations. Other options are the median, the value which splits the sample
into lower and upper halves, and the mode which is the most frequent value. These values
will differ if the distribution is skewed, as say for household income.

The estimate of σ2 we typically like to use is the averaged squared deviation from the
mean given by σ̂2 = Σn

i=1(Yi − µ)2/n. But since we do not know µ, we need to use

σ̂2 = Σn
i=1(Yi − µ̂)2/(n− 1).
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1.2 Sources of Variation

1.2 Sources of Variation

The variation in our sample values has many causes. We cannot discern most of them,
but we can identify some, and this leads us to partitioning the variance into components.
This in turn leads us to the question which sources are important. Sample characteristics
like age, sex, ethnicity, education level are obviously important for some characters. When
you see data in a text book, you only have the values given you, but in the research world,
you will collect the data yourself, and an important issue is then to identify as many
potentially important covariables as possible. In some cases, you will impose treatments
to see if they effect the response. In other cases, you will control the experiment so as to
minimise extraneous sources of variation.

1.2.1 Sire model

The usual motivation for this model is to ascertain how much of the variation is due to
genetics. The HARVEY dataset has calf weights of 65 calves sired by 9 bulls. The data
set also records information on the age of the cow (DamAge) and the Line (maybe of the
cow). We can therefore calculate an analysis of variance table

Source of Variation DF Sum Squares Mean Square F-Ratio Expected Mean Squ
Mean 1 2028339.5 15262.1
Line 2 4454.6 2227.3 16.76 σ2

e + kσ2
s + L

DamAge 1 46.5 46.5 0.35 σ2
e + A

Sire 6 2033.4 338.9 2.55 σ2
e + kσ2

s

Residual 55 7309.5 132.9 σ2
e

Since this is not a balanced set of data, we leave calculation to the software. This model
was fitted as a fixed model and the software just reports the F-Ratios and the residual
variance. Hand calculation would proceed by calculating the Sum of Squares first. The
model was written as

ADG ~ mu Line DamAge Sire

and the model fit summarized as

Model_Term Gamma Sigma Sigma/SE % C

Residual SCA_V 65 1.00000 132.895 5.24 0 P

Wald F statistics

Source of Variation NumDF DenDF F-inc P-inc

7 mu 1 55.0 15262.07 <.001

4 Line 2 55.0 16.76 <.001

5 DamAge 1 55.0 0.35 0.557

2 Sire 6 55.0 2.55 0.030
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1.2 Sources of Variation

In this case, the Variance attributed to each term is termed ’Incremental’. The process
involves first sweeping out the variation attributed to the mean ( 176.652×65), then Line,
then DamAge, then Sire leaving 7309.5 unexplained. Since the terms or not orthogonal,
changing the order would change the variance explained by each term. This issue will be
discussed later.

The final column gives ’Expected Mean Squares’ in terms of variance components (σ2
e and

σ2
s and fixed effect deviations given simply as A and L. If there is no variance attributable

to sires, (that is, σ2
s has a true value of zero), then the Sire Mean Square is simply another

estimate of the residual variance and an F-test will show it is not significant. Indeed an
F-ratio of 2.55 tested with 6,55 degrees of freedom has a probability 0.03 so is significant
at the 5% level.

Our interest in this model was to calculate heritability. For that, we need the value of k
so that we can calculate σ̂2

s =(SMS-RMS)/k. k is the effective number of progeny per sire
(roughly 65/9) but since the actual numbers vary between 5 and 9, we let the software

calculate it: k = 7.2, σ̂2
s = 28.9. Heritability is therefore calculated as 4σ̂2

s/(σ̂
2
e + σ̂2

s) =
4×28.9/(132.9+28.9) = 0.71. The 4 comes in because sires represent only half the genetic
variance.

The REML method provides an alternative way to calculate things. For this, we indicate
that sire is to be fitted as random effects. The model is written as

ADG ~ mu Line DamAge !r Sire

and the model fit summarized as

Approximate stratum variance decomposition

Stratum Degrees-Freedom Variance Component Coefficients

Sire 5.93 341.035 7.2 1.0

Residual Variance 55.07 132.756 0.0 1.0

Model_Term Gamma Sigma Sigma/SE % C

Sire IDV_V 9 0.217651 28.8946 1.04 0 P

Residual SCA_V 65 1.00000 132.756 5.25 0 P

Wald F statistics

Source of Variation NumDF DenDF F-inc P-inc

7 mu 1 5.9 5906.96 <.001

4 Line 2 5.9 6.19 0.035

5 DamAge 1 57.8 0.62 0.435

Notice that this reports the k coefficient in the stratum variance decomposition and rege-
nerates the sire mean Square using that coefficient.
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1.3 Fixed vs Random

The other thing to note is the Denominator DF for Line is reported as 5.9. This is
because Sires are nested within Lines so that if we wanted to test Lines, it would need to
be relative to the Sire Variance (which has 6 DF). This is why the F-ratio for LINES is
now 6.2 rather than the 16.8 reported in the fixed analysis. If this was your data, you had
designed the trial, you would/should have known that sires were nested in Lines, and had
you wanted to test for Line differences, would recalculate the F statistic for Lines in the
fixed analysis as 6.57 and tested it with 2,6 degrees of freedom. We do not know whether
Lines is a classification of the sires and/or of the Dams. However, structurally, lines are
a classification of sires because each sire is associated with only one Line.

Even so, there are small differences between the two analyses. This is because the REML
analysis fits the sire effects better accounting for the unequal numbers of calves per sire.

1.3 Fixed vs Random

REML estimation of Variance components is based on the linear mixed model written as

y = Xβ +Zu+ η

and by solving the mixed model equations given as(
X ′R−1X X ′R−1Z
Z ′R−1X Z ′R−1Z +G−1

)(
β
u

)
=

(
X ′R−1y
Z ′R−1y

)
where y is the known vector of n observations, X is the design matrix for fixed effects β,
Z is the design matrix for random effects u, R is Var(η) and G is Var(u).

That is, with the assumption of normality, y ∼N(Xβ, R+ZGZ′).

In the simplest case, R and G are simply scaled Identity matrices, scaled by σ2
e and

σs
u respecively, as in the Sire Model above. However, for many models fitted in AS-

Reml/Echidna, they can be quite complex structures.

This is not the place to delve into these details. We simply note that we observe y
and collect other information from which we hypothesize the linear model given above.
Implicitly we assume we know the correct X, Z, R and G so that we can solve the mixed
model equations for β and u.

In fact, we hypothesize a model which defines X and Z and the form of R and G and use
the REML algorithm to find suitable parameter values for R and G. The final solutions
for β and u are often called empirical because they are based on estimated R and G
matrices.

Since there are so many assumptions tied up in this process, it is likely that different
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statisticians will end up with different models for the same data, or similar data. We will
consider comparison among models latter.

1.3.1 Random effects are shrunken

Going back to our sire model, we could define a sire effect as (the sum of observations for
that sire) divided by (the number of those observations) less the mean, and could write
that as β̂i = Σn+i

j=1(yij−µ)/ni. This is known as the Best Linear Unbiased Estimate (BLUE)
of the sire effect and it uses all the information on the sire equally. However, if our purpose
is to predict future performance of progeny from this sire, and we want to select among
several sires which have unequal amounts of information (say one is estimated from 10
progeny and another from 1000 progeny) then a better selection criterion is the Best Linear
Unbiased Predictor (BLUP) of the sire effect given by ũi = Σn+i

j=1(yij − µ)/(ni + σ2
e/σ

s
u).

This is a shrunken value (compared to β̂i) because we have added a function of the
heritability to the divisor (assuming the variance components are both positive). If the
genetic variance is small, there is more shrinkage than if it is large. If ni is relatively
small, there is more shrinkage than if it is large. So, if the sire variance is 10% of the
residual variance, the divisors for samples of size 10 and 1000 change from 10 and 1000
for the BLUE to 20 and 1010 for the BLUP. That is, the sire effect based on 10 progeny
is reduced 50% while the sire effect based on 1000 progeny is reduced by 1%.

1.3.2 Fixed or Random

One criterion for choosing whether to fit a factor as fixed or random is the role of a term
in the model, whether you are interested in the effects and whether that interest relates
to describing the past or predicting the future, whether it relates to the individual or to
a class the individual represents.

1.3.3 Recovery of interblock information

The REML algorithm was first published (Thompson 1971) as a general method for
recovering interblock information.

In agricultural field experiments, it was early recognised that two plots sown to the same
cultivar did not give the same yield. So, to estimate cultivar/treatment effects, multiple
plots of each could be sown in a Completely Random Design. The cultivars need to be
allocated randomly to the plots to avoid bias in the estimates.

However, part of this discepancy is associated with patches in the field; some parts tend
to yield more than other parts. To try and manage this, the field was divided into Blocks
and plots within plots. Then, the trial was sown so that each block contained 1 plot of
each cultivar/variety/treatment. This is know as a Randomised Complete Block Design.

However, it is nearly impossible to predict where to best place the blocks so that plots
within blocks were most similar. Therefore, use of smaller blocks was proposed. These
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were known as Incomplete Block designs and the whole discipline of design efficiency was
developed.

The problem remained that if you followed a sweep algorithm to estimate treatment effects,
you would adjust the data first for the block effects, then estimate treatment effects from
the block adjusted data. However, the block effects, being incomplete blocks, contained
some of the treatment effect. They over adjusted. The REML method was then devised
to estimate the appropriate shrinkage of the block effects so as to most efficiently estimate
the treatment effects. The best shrinkage turned out to be the BLUP of the block effects
utilising the ratio of residual variance component to block variance component.

1.4 General Variance Models

Mixed models can be viewed as a linear model with correlated residuals. Here we could
fit a model y = Xβ + ϵ where Var(ϵ)=R+ZGZ ′. In this context the random terms in
the model simply define a correlation structure among residuals. We still need to estimate
the variance components because they define the correlations.

1.4.1 Animal model

The sire model has the disadvantage that it only considers one genetic relationship, a
covariance due to having the same sire. However, we expect there will also be correlations
due to a common dam, a common environment and other genetic relationships (common
maternal grandsire). This leads us to the genetic relationship matrix, A, derived from a
pedigree of animals. This matrix, often called the Numerator relationship matrix (NRM)
is relatively easy to compute by building the line for an individual by averaging the lines
for its parents and adjusting for any inbreeding.

In fact, for REML we need the inverse of this matrix and that turns out to be a sparse
matrix so it is relatively easy to analyse data with a large pedigree. Again, our purpose
may be to estimate the genetic value of the individuals, or to estimate the variance
components.

Any such analysis needs to also adjust for known sources of information which contribute
to the variation in the response variable. For example, when analysing birth weight or
weaning weight, we may include the parity of the dam, a ’Herd-Year-Season’ effect since
season conditions and management effects will affect the responses, maternal genetic and
non-genetic effects, litter effects, birth/rearing rank.

This kind of genetic model can be applied to trees but the population structure is different.
Trees will often be planted in say 5 full-sib trees per plot. With trees though, there can
be spatial plot effects (elevation, aspect, changes in soil structure or moisture) which need
to be adjusted for. Fitting a tree model with spatial variation also requires the fitting
of a non-genetic tree effect (equivalently an uncorrelated tree residual effect) so that the
genetic effect is not overstated. A reduced animal model is a good alternative to an animal
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model for tree data.

1.4.2 GBLUP

We have discussed use of a pedigree based relationship matrix. However, now we have the
possibility of assessing the genetic relationship based on analysis of the genome. There
are many Single Neucleotide Polymorphisms (SNPs, or markers) in the genome, that is
an identifiable string of genetic letters (A,C,G,T) in which just 1 letter is altered. We do
not need to know the parentage of an individual to read its SNP sequence. Therefore,
for any pair of individuals, we cannot tell whether that are identical because they have
the same parents or not. However, closely related individuals will tend to be identical by
descent relative to unrelated individuals. So the average degree of identity across many
SNPs predicts genetic relatedness. Given a matrix M coded 0/1/2 with individuls in rows
and markers in columns, we can calculate a marker based relationship as K = MM ′/s
where s scales the matrix to a scale similar to the A matrix. Thus, if we do not have
a pedigree but do have marker information, we can still do a genetic analysis either to
estimate heritability, or to predict genetic potential. GBLUP is the name commonly used
for such an analysis.

1.5 Direct Product Structures

In introductory statistics, the variance is a simple quantity quantifying the spread of
observations about a mean. But this description assumes the observations are independent
(uncorrelated) and have the same variance. In fact, measurements of any kind are rarely
uncorrelated and often do not have the same variance. Nevertheless, independent with
equal variance is a convenient starting point and we can write Var(y1) as the matrix σ2

1I.
Now consider another set of measurements on the same individuals listed in the same
order also with equal (but different) variance Var(y2) = σ2

2I. If we plotted y1 against
y2, we will likely find an association which we can call the covariance σ12I. If we wrote
the numbers out, we would probably use a table where we could label the rows by the
names of the subjects/units/patients/animals/plots/whatever and the columns by some
label that described the measurement/trait. Or we could stack the variables into a single
column and have two labels for each row (the unit and the trait). The mathematical
function that converts a matrix to a column by stacking the rows below each other is

vec(). So we can write Var

(
y1

y2

)
=

(
σ2
1I σ12I

σ12I σ2
2I

)
= Σ⊗ I where Σ =

(
σ2
1 σ12

σ12 σ2
2

)
.

Thus, the variance of the combined vector can be written as a direct product of a variance
matrix pertaining to the columns (Σ) and a variance matrix pertaining to the rows (I).

This principle can be extended to any matrix of effects and is widely used in mixed
models. We use it for plots laid out in a grid, for different traits measured on the same
individuals, for repeated measures (the same measurement taken at different times) etc.
In fact, whenever a set of effects naturally form a table, it is likely that the variance matrix
for those effects can be written as a direct product of a structure related to columns and
a structure related to rows.

8
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There are a few considerations. The main one is that only one dimension can be defined
in terms of variances, the others must be in terms of correlations or some other known
relationship (as in marker based or pedigree based relationship matrices).

1.5.1 Multivariate Analysis

As discussed above, for multivariate data, the residual variance is I ⊗ΣE. Usually ΣE is
a general (unstructured) symmetric variance matrix. Similarly, for random genetic effects
fitted say as Trait.animal, the variance matrix is ΣG ⊗ A where ΣG is the genetic
variance matrix and A is the relationship matrix for the individuals. While ideally we
would like ΣG to have the same form as ΣE, an unstructured symmetric variance matrix,
practically, such a matrix cannot be reliably estimated because of sampling variation,
especially when there are many traits. We can then use a form with fewer parameters
such as the factor analytic structure discussed below.

The code for a model of this type is

wwt yyt gfw ~ Trait Trait.Flock !r us(Trait).nrm(animal)

residual units.us(Trait}

1.5.2 Spatial Model

Ultimately, this problem led to the so called spatial modelling of field effects. Instead
of using a block based error variance, we use a proximity based correlation structure for
the residuals. While there are many possible forms for this, a practical model is the se-
parable autoregressive model. It is computationally efficient compared to many others
and accommodates many forms of spatial variation. In particular, it does not require the
artificial delineation of plots into blocks in the field. However, it is not recommended we
discard all the design considerations of the past. Indeed block designs and row/column de-
signs are still used for determining field layout, although fitting an autoregressive residual
correlation structure usually sweeps out the block effects that might be fitted.

In field trials, row effects, column effects, changes in soil type, cultural operations (sowing,
plot trimming, harvesting), previous land use all contribute to correlation among plots.
Often, we cannot identify the source and that is when the autoregeressive spatial model
becomes useful. It simply assumes plots closer together will be more highly correlated.
More formally, the yield of a plot is modelled as a proportion of the residual from the
immediate neighbour plus a new independent effect. However, as fitted, we do not need
to assume one plot was first and its neighbour second. We just estimate the correlation of
neighbours raised to the distance between plots. Since plots are usually rectangular and
cultural operations are usually applied row-wise or columnwise, we estimate a separate
correlation for rows and for columns.

Spatial analysis (Gilmour et al., 1997) uses R to account for correlation among residuals.
Since field plots are laid out in a grid, they have a tabular structure and an appropriate
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variance structure can be defined as a variance (σ2) times a row structure (CR) times a
column structure (CC) where C is a correlation structure. A separate correlation struc-
ture is used for rows and columns because plots are typically rectangular so the distance
from plot midpoints is greater in one dimension than the other. A simple form of the
correlation structure is first degree autoregressive. This is a process where the yield of a
plot is a proprtion of its immediate neighbour plus some extra variation. The process as
implemented is not directional in that the same correlation structure is produced regard-
less of whether we start from the left or the right. Given a lag 1 correlation coefficient of
ϕ, the correlation between any to points is ϕd where d is the distance. While this structure
is dense, its inverse is tridiagonal (i.e. quite sparse). So the spatial residual model for a
field trial is typically σ2CR ⊗CC and is specified to ASReml/Echidna as

yield ~ mu + variety

residual ar1(Row):ar1(Column)

more formally specified as

yield ~ mu + variety

residual ar1v(Row):ar1(Column)

1.5.3 Genotype by Environment

In plant breeding, we need to evaluate genotypes across environments and are look-
ing/hoping for a consensus of genotype rankings across the environments. Here we have
separate Ri matrices for each trial and complex genetic relationships differentially ex-
pressed across the environments modelled as a direct product of an across environment
covariance matrix and a genetic relationship matrix. For example, given 18,432 yields
from 64 experiments across 12 YrLoc representing a pedigree of 5132 genotypes.

!ASSIGN ExSet 1 7 9 11

!ASSIGN BlSet 2 3 4 5 7 8 9 10 11 12

!ASSIGN RwSet 1 4 7 9 11

!ASSIGN ClSet 1 2 3 4 5 6 7 8 10 11 12

yield ~ mu YrLoc mv !r xfa1(YrLoc).nrm(Geno) xfa1(YrLoc).ide(Geno) +

at(YrLoc $ExSet):expt + at(YrLoc $BlSet):expt:Block +

at(YrLoc $ClSet):expt:Col + at(YrLoc $RwSet):expt:Row

residual at(expt).ar1(Col).ar1(Row)

Since there are 12 YrLoc levels, an unstructured genetic variance would have 78 parameters
to estimate for each of the additive genetic and nonadditive strata. This will rarely be
feasible because of sampling variation. We have therefore used a factor analytic 1 structure
(xfa1() discussed below) which estimates just 24 parameters for each strata.
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1.5.4 Factor analytic models

Estimation of an unstructured (fully parameterised) variance matrix constrained to be
positive (semi-) definite often presents problems. A Parameter Expanded EM algorithm
(Lui et al., 1998) is implemented in ASReml for this case but does not quickly produce an
acceptable result when the maximum likelihood corresponds to parameter values outside
the parameter space. The factor analytic variance structure is given by Σ = ΓΓ′ + Ψ
where the columns of Γ are referred to as loadings which relate the k variables to f latent
factors; Ψ is a diagonal matrix of k specific variances. The factors are analagous to
principal components typically constrained to be orthogonal.

This model can be understood as an extension of the compound symmetry model fitted
say as Genotype + Site:Genotype. The factor analytic model is equivalent to compound
symmetry when Γ has one column with all loadings equal (being the square-root of the Ge-
notype variance component) and all specific variance are equal (being the Site:Genotype
variance component). This structure has proved a useful alternative to the fully parame-
terised formulation which is often over parameterized. The factor analytic structure is
easily made positive (semi-) definite by restraining the specific variances to be zero or
positive.

Thompson et al. (2003) present a sparse implementation of this model writing the variance

structure and its inverse as

(
Ψ+ ΓΓ′ −Γ
−Γ′ I

)−1

=

(
Ψ−1 Ψ−1Γ
Γ′Ψ−1 I + Γ′Ψ−1Γ

)
. To use

this extended formulation, the design matrix with k columns needs to be extended to
include f zero columns for the factors. When some specific variances are zero, Thompson
et al. (2003) show how the zero Ψ rows can be collapsed into the factor rows so that all
loadings can be estimated.

The advantages of this model are: 1) that it can be built up with first 1 factor, then 2,
and more if needed; 2) that the elements of Ψ may be zero leading to a possibly singular
matrix (correlation of 1); 3) while sometimes fragile, the factor analytic model is more
robust than the fully parameterised model in those cases; 4) in most cases, the bulk
of the covariance is picked up with just a few factors leading to a parsimonious model
when k is large; 5) the sparse formulation runs substantially faster than the variance
structures with a dense inverse. More recently, it has been appreciated that fitting this
model as a completely reduced rank FA plus a diagonal term (rr1(Site):Genotype +

diag(Site):Genotype) is sometimes even faster (more sparse) formulation. However, it
all depends on the ultimate sparsity pattern.

Table 3 reports some recent timing comparisons in ASReml 4.2 for an analysis performed
by Alison Smith. The model fits AR×AR spatial variation to 123 experiments evaluating
3755 genotypes in 59 environments. Additional blocking factors RowBlock, ColBlock,
expt, expt:Row, expt:Col were fitted in environments as needed. The genetic model as
fitted as rrk(Env).name + diag(Env).name for the RR+D runs and xfak(Env).name
for the XFA runs with k taking values 1:6. The XFA1 model reports 37,608 data records,
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Table 1.1: Timing comparison for 6 models fitted to
Model Degree Size of C Size of C−1 Order(secs) Iteration (secs)
RR+D 1 3,723645 7,158653 20 18(13)
RR+D 2 5,032754 11,928955 37 45(32)
RR+D 3 6,532998 19,243205 61 122(80)
RR+D 4 8,224377 26,794285 90 218(135)
RR+D 5 10,106891 32,994921 98 277(180)
RR+D 6 12,180540 43,982611 129 461(287)
XFA 1 1,72921 8,527122 50 37(25)
XFA 2 1,962101 9,211045 72 44(30)
XFA 3 2,206574 9,965900 75 55(40)
XFA 4 2,483050 10.825425 79 67(50)
XFA 5 2,802036 11,796371 84 85(64)
XFA 6 3,131117 12,272034 80 93(73)

The times are CPU time with Wall Clock times in parentheses.

544,598 equations and 482 variance components. In this instance, the RR+D formulation
is decidedly slower than the XFA formulation for cases with more than 2 factors.

There are two issues with FA models. 1) When there are multiple loadings, singularities
appear in the I matrix. Historically we set some loadings to Zero but in fact it is
apparently better to keep the loadings close to orthogonal and just not update loadings
that would have been set to zero; I have had less convergence issues with these models since
adopting this approach, 2) The I matrix rows related to loadings can be ill-conditioned,
the loading parameters sometimes being strongly (negatively) correlated. This is overcome
by using a ridge regression technique, testing for poor condition and inflating the diagonal
elements of I pertaining to the loadings by 1% or more.

1.6 Hypothesis testing

1.6.1 Wald F statistics

Testing for fixed effects is sometimes required but is not straight-forward in mixed models.
The change in residual sum of squares due to adding a fixed term in the model is a sum of
squares that can be divided by its degrees of freedom and the residual variance to produce
a Wald F statistic. The issue is that the value of this statistic depends on the order that
terms are fitted in the model. Typically a test for a model term is not considered valid if
it is marginal to a significant higher order term. To test all possibilities using only simple
incremental F statistics will often require judicious ordering and several runs.

ASReml reports two Wald F statistics. The first is the simple incremental F value based on
the sequential adding of model terms in the order specified in the model formula. However,
this is really only valid for testing the final terms in the list that are not significant. The
second F statistic is described as the Maximal Conditional Incremental (MCI) F statistic.
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1.6 Hypothesis testing

Model terms are classified into groups such that all the terms in a group are marginal to
a term in a higher group, but not to any terms in the same group or a lower group. For
example, fitting model terms mu + A + B + C + D + A:B + A:C + A:D + B:C + B:D

+ A:B:C + A:B:D results in 3 groups (main factors, first order interactions and second
order interactions). The MCI F statistic for terms in the last group tests these terms as
if they were fitted last. The MCI tests for A:C and B:C are valid for testing these terms if
the term it is marginal to (A:B:C) is not significant. Similarly, the MCI tests for A:D and
B:D are valid for testing these terms if A:B:D is not significant, and the MCI test for A:B
is valid if neither of the three-way interations are significant. Using the two F-statistics
together, the number of runs required to thoroughly test all terms is greatly reduced. The
formation of groups is not just based on the base factors but also whether a term removes
degrees of freedom from another term. For example, in a model mu Region Location,
Region cannot be in the same group as Location because locations are nested in regions.

Formal testing of Wald F statistics in a mixed model depends on the calculation of the
denominator degrees of freedom. ASReml uses numerical derivatives to calculate the
denominator degrees of freedom using the methodology of Kenward and Roger (1997).
However, this is expensive if there are many variance parameters as an extra half iteration
(steps 1-5) are required for each parameter.
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