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Abstract

ASReml has several options when forming the pedigree. This paper discusses
the new developments for Release 2. Briefly, these are constraints on the Genetic
groups, changes to the way the Maternal Grandsire model is fitted and provision
for a degree of selfing and inbreeding.
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1 Introduction

An important development in the use of mixed models was the incorporation of
the Numerator Relationship Matrix to account for genetic correlations among
animals. The wonder of this approach is that the inverse relationship matrix is
in general sparser than the relationship matrix itself and not difficult to form
in a recursive manner when parents are listed before their offspring.

However, a few special situations arise in practise which we consider here.
First, in some breeding situations, sires and sire groups are tracked but in-
dividual dam pedigrees are not tracked. This leads to the Maternal Grand-
sire model. ASReml Release 1 accomodated this model by simply inserting a
dummy dam into the pedigree. We now form the inverse omitting this dummy
dam. A further modification is for sex-linked traits when it is just inheritance
through the X chromosome that is considered.
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In open pollinated forest trees, a proportion of the open-pollinated flowers are
self pollinated. We derive the relationship matrix for a given proportion of
selfing when the second parent is unspecified.

In other plant species, for example cereals, the plants are mainly self pollinated
and lines are selfed for several generations to produce varieties for release.
Alternatively, the pedigree can have varying levels of selfing. The pedigree
relationship needs to take this into account.

ASReml now has 3 Ainverse routines. These extensions are implemented as
for the method of Meuwissen and Lou (1992) which should be slightly faster
than the other methods for large pedigrees.

2 Standard relationship matrix

The standard procedures can be summarised as follows. Let A = {aij} be the
relationship matrix. Let ai,−j be the ith row of A except for the jth element.

(1) Assume the relationship matrix for the base animals is known for exam-
ple, are unrelated and not inbred so that their relationship matrix is an
Identity matrix.

(2) The row of the relationship matrix for the progeny (i) of two parents (s
and d) is generated as the average of the relationship matrix rows for the
parents.

ai,−i =
1
2
(as,−i + ad,−i)

(3) The diagonal element of this new animal is ai,i = 1+ 1
2
as,d = 1+fi where

fi is the inbreeding coefficient.

Applying this rule for two fullsibs and a half-sib generates the following matrix.



Sire 1. 0. 0. 0.5 0.5 0.5

Dam1 0. 1. 0. 0.5 0.5 0.

Dam2 0. 0. 1. 0. 0. 0.5

SibS1 0.5 0.5 0. 1. 0.5 0.25

SibS1 0.5 0.5 0. 0.5 1.0 0.25

SibS2 0.5 0. 0.5 0.25 0.25 1.0


Progressively inverting this matrix gives the sequence:
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
Sire 1 0 0

Dam1 0 1 0

Dam2 0 0 1

 ⇒



Sire 1.5 0.5 0 −1

Dam1 0.5 1.5 0 −1

Dam2 0 0 1 0

SibS1 −1 −1 0 2


⇒



Sire 2 1 0 −1 −1

Dam1 1 2 0 −1 −1

Dam2 0 0 1 0 0

SibS1 −1 −1 0 2 0

SibS1 −1 −1 0 0 2



⇒



Sire 2.5 1 0.5 −1 −1 −1

Dam1 1 2 0 −1 −1 0

Dam2 0.5 0 1.5 0 0 −1

SibS1 −1 −1 0 2 0 0

SibS1 −1 −1 0 0 2 0

SibS2 −1 0 −1 0 0 2


The rule for progressively generating these inverses is derived as follows.

Assume we have A1 and A−1
1 for a set of animals including the parents of a

new animal. Let p be a vector which performs the operation of averaging the
parental rows of A1. It will be all zero except that the positions corresponding
to the parents will be 0.5.

Then A2 =

 A1 A1p

p′A1 1 + 1
2
as,d

 is the expanded relationship matrix.

The standard expression for the inverse of a partitioned matrix is

 A B

B′ C


−1

=

A−1 +A−1BQB′A−1 A−1BQ

QB′A−1 Q

 where

Q = (C −B′A−1B)−1. In this case, B = A1p so that A−1B = p.

Thus A−1
2 =

A−1
1 + qpp′ −qp

−qp′ q

 where q = (1 + 1
2
as,d − p′A1p)

−1.

Since p has such a simple structure, q = 1/(1− 1
4
(as,s+ad,d)) = 4/(2−(fs+fd))

which simply requires the inbreeding coefficients for each parent.

To test ASReml we obtain A−1, invert it, and check the result. We will use
the following pedigree which includes inbreeding and selfing.
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1 0 0

2 0 0

3 0 0

4 1 1

5 1 1

6 2 2

7 4 6

8 5 6

9 7 8

10 9 9

The following was produced withASReml qualifiers !METHOD 0 !GIV !DIAG.
First is the relationship matrix obtained by inverting the Inverse relationship
matrix. Rounding errors occur because of the moderate precision of the Ain-
verse .giv file. Next is the Ainverse as returned in the .giv file and finally
the inbreeding coefficients as returned in the ainverse.dia file.

1 1.0

2 0.0 1.0

3 0.0 0.0 1.0

4 1.0 0.0 0.0 1.500

5 1.0 0.0 0.0 1.000 1.500

6 0.0 1.0 0.0 0.000 0.000 1.500

7 0.5 0.5 0.0 0.750 0.500 0.750 1.0000

8 0.5 0.5 0.0 0.500 0.750 0.750 0.6250 1.0000

9 0.5 0.5 0.0 0.625 0.625 0.750 0.8125 0.8125 1.3125

10 0.5 0.5 0.0 0.625 0.625 0.750 0.8125 0.8125 1.3125 1.65625

1 5.0

2 .0 3.0

3 .0 .0 1.0

4 -2.0 .0 .0 3.0

5 -2.0 .0 .0 .0 3.0

6 .0 -2.0 .0 1.0 1.0 4.0

7 .0 .0 .0 -2.0 .0 -2.0 4.5

8 .0 .0 .0 .0 -2.0 -2.0 0.5 4.5

9 .0 .0 .0 .0 .0 .0 -1.0 -1.0 4.90909

10 .0 .0 .0 .0 .0 .0 .0 .0 -2.90909 2.90909

Identity Inbreeding DiagofAinverse

1 0.0000 5.0000

2 0.0000 3.0000

3 0.0000 1.0000

4 0.50000 3.0000

5 0.50000 3.0000

6 0.50000 4.0000

7 0.0000 4.5000
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8 0.0000 4.5000

9 0.31250 4.9091

10 0.65625 2.9091

Wed 08/09/2004

3 Maternal Grandsire Model

In this situation, dam pedigree is incomplete. The dam of the dam is regarded
as a base animal but the sire of the dam is known. Consider the relationship
matrix for a Maternal Grandsire, Sire, Dam and Progeny given by

Sire of Dam 1 + fg r 0 (1 + fg)/2 (1 + fg + 2r)/4

Sire r 1 + fs 0 r/2 (2 + 2fs + r)/4

Dam of Dam 0 0 1 0.5 0.25

Dam (1 + fg)/2 r/2 0.5 1 (1 + r/2)/2

Progeny (1+fg+2r)
4

(2+2fs+r)
4

1
4

(1+r/2)
2

1 + r
4


We see that the Progeny line is half the Sire line plus a quarter of the Maternal
Grandsire line except that the diagonal element is 1 plus a quarter of the
relationship between the sire and the maternal grandsire.

The algebra is as before except for a different definition of p and q.

For the non-zero elements of ps being
1
2
and 1

4
for sire and maternal grandsire

respectively, Am =

 A1 A1ps

p′
sA1 1 + r

4

 and A−1
m =

A−1
1 + psqsp

′
s − psqs

−psqs qs


where

qs = (1 + r/4− p′
sAsps)

−1 = (1− (1 + fg + 4(1 + fs))/16)
−1 = 16

11−(fg+4fs)
.

The following results are from ASReml using the same pedigree file as be-
fore but with qualifiers !METHOD 0 !MGS !GIV !DIAG where the !MGS qualifier
causes the third field to be interpreted as the maternal grandsire.

1 1.0000

2 0.0000 1.0000

3 0.0000 0.0000 1.

4 0.7500 0.0000 0. 1.2500

5 0.7500 0.0000 0. 0.5625 1.2500

6 0.0000 0.7500 0. 0.0000 0.0000 1.2500

7 0.3750 0.1875 0. 0.6250 0.2812 0.3125 1.0000
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8 0.3750 0.1875 0. 0.2813 0.6250 0.3125 0.2188 1.0000

9 0.2812 0.1406 0. 0.3828 0.2969 0.2344 0.5547 0.3594 1.0547

10 0.2109 0.1055 0. 0.2871 0.2227 0.1758 0.4160 0.2695 0.7910 1.2637

1 1 2.63636

2 2 1.81818

3 3 1.00000

4 1 -1.09091 4 1.86480

5 1 -1.09091 5 1.86480

6 2 -1.09091 4 0.205128 5 0.205128 6 1.65967

7 4 -0.820513 6 -0.410256 7 2.00466

8 5 -0.820513 6 -0.410256 7 0.181818 8 1.73193

9 7 -0.727273 8 -0.363636 9 2.29358

10 9 -1.11872 10 1.49162

Identity Inbreeding DiagofAinverse

1 0.0000 2.6364

2 0.0000 1.8182

3 0.0000 1.0000

4 0.25000 1.8648

5 0.25000 1.8648

6 0.25000 1.6597

7 0.0000 2.0047

8 0.0000 1.7319

9 0.54688E-01 2.2936

10 0.26367 1.4916

4 Honey Bee breeding Model

Bienefeld et al (2007) describes a breeding program for Honey Bees which leads
to another variation on the A matrix rules. The male bee is haploid. There
is a mother queen mated to produce ’drone bearing’ queens that produce the
drones for mating. Each mother queen has several daughters and these have
several sons. The scheme is quantified by two parameters q, the number of
drone bearing queens, and d the average number of drones a queen mates
with. So a queen is produced by combining the genetic material in a drone
with that of the queen. But the drone is derived from the mother queen.

This scenario is similar to the Maternal Grandsire Model except the vector
p will have coefficients 1

2
for the mating queen and p for the mother queen

(which produced the mating drone).

?? Am =

 A1 A1ps

p′
sA1 1 + r

4

 and A−1
m =

A−1
1 + psqsp

′
s − psqs

−psqs qs

 where
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qs = (1 + r/4− p′
sAsps)

−1 = (1− (1 + fg + 4(1 + fs))/16)
−1 = 16

11−(fg+4fs)
.

The following results are from ASReml using the same pedigree file as be-
fore but with qualifiers !METHOD 0 !BEE 0.367 !GIV !DIAG where the !BEE
0.367 qualifier causes the third field to be interpreted as the mother queen
with path coefficient p = 0.367.

1.0000 A matrix

0.0000 1.0000

0.0000 0.0000 1

0.8670 0.0000 0 1.3670

0.8670 0.0000 0 0.7517 1.3670

0.0000 0.8670 0 0.0000 0.0000 1.3670

0.4335 0.3182 0 0.6835 0.3758 0.5017 0.9488

0.4335 0.3182 0 0.3758 0.6835 0.5017 0.3720 0.9488

0.3758 0.2759 0 0.4797 0.4388 0.4350 0.6110 0.5342 1.0854

0.3259 0.2392 0 0.4159 0.3804 0.3771 0.5297 0.4632 0.9410 1.3472

0.1629 0.1196 0 0.2079 0.1902 0.1886 0.2649 0.2316 0.4705 0.6736 1.3368

0.1196 0.0878 0 0.1526 0.1396 0.1384 0.1944 0.1700 0.3454 0.4944 0.2472 1.1814

Inbreeding

0.0 0.0 0.0 0.3670 0.3670 0.3670 -0.0512 -0.0512 0.0854 0.3472 0.3368 0.1814

A-inverse

3.4433

0.0000 2.2216

0.0000 0.0000 1

-1.4090 0.0000 0 2.2163

-1.4090 0.0000 0 0.0000 2.2163

0.0000 -1.4090 0 0.4338 0.4338 2.2621

0.0000 0.0000 0 -1.1821 0.0000 -0.8677 2.7925

0.0000 0.0000 0 0.0000 -1.1821 -0.8677 0.3143 2.5950

0.0000 0.0000 0 0.0000 0.0000 0.0000 -0.8564 -0.6286 3.1276

0.0000 0.0000 0 0.0000 0.0000 0.0000 0.0000 0.0000 -1.6318 2.2668

0.0000 0.0000 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.5000 1.0

0.0000 0.0000 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.3670 0.0 1.000

Identity Inbreeding Diag_of_Ainv Offspring-Parent Pedigree

1 0.0000 3.4433 Parent 1 0 0

2 0.0000 2.2216 Parent 2 0 0

3 0.0000 1.0000 Offspring 3 0 0

4 0.50000 2.2163 Parent 4 1 1

5 0.50000 2.2163 Parent 5 1 1

6 0.50000 2.2621 Parent 6 2 2

7 0.81836E-01 2.7925 Parent 7 4 6

8 0.81836E-01 2.5950 Parent 8 5 6

9 0.21838 3.1276 Parent 9 7 8

10 0.48017 2.2668 Parent 10 9 9

11 0.0000 1.0000 Offspring 11 10 0

12 0.0000 1.0000 Offspring 12 0 10

The above numbers are not correct because Inbreeding cannot be negative!

5 Genetic groups

The ASReml qualifier !GROUPS g indicates that the first g identifiers in the
pedigree file relate to genetic groups rather than to individuals in the popula-
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tion. When genetic groups are present, the SIRE and DAM fields should both
be zero for the group lines. All other lines must specify one of the genetic
groups as SIRE or DAM if the actual parent is unknown.

In release 1.62, the option was added to apply ’sum to zero’ constraints on
group effects. If the pedigree file includes genetic groups without constraint,
the ’constant term’ will be included in the genetic group effects. The constant
term is unlikely to be the population average and may generate singularities in
unpredictable locations because of the ordering of the ’sparse’ equations. This
may be undesirable. The !LAST qualifier has been added to force the ’group’
equations to be absorbed last so that any singularities in them will appear
where expected. However, singularities in the pedigree factor also mess up
the REML likelihood evaluation because they mess up the degrees of freedom
count.

’Sum to Zero’ constraints are applied to sets of genetic group effects by follo-
wing the set with a dummy genetic group (one with no animals in it). ASReml
then modifies the A inverse to apply a constraint in place of this dummy ge-
netic group. That is, when there are two or more groups containing animals
followed by a group with no animals, the A inverse line for the empty group
is replaced with a line containing 1’s for the preceding set of groups, and zero
otherwise. This Lagrangian constrains the genetic group effects to sum to zero.

The following results from ASReml !METHOD 0 !GRP 3 !GIV !DIAG. We use
the same pedigree file as before but now the first three lines are genetic groups.
Notice that there are no individuals assigned to the third group. When AS-
Reml has formed the A-inverse, it notes that this ’group’ is empty and inserts
Lagrangian off diagonal elements for this equation.

For the purpose of checking the inverse, the A matrix was calculated after
zeroing the intersection between groups and individuals.

%ex/ex11/amg00.txt

\input /data/ex/ex11/amg00.txt

1 0.33333

2-0.33333 0.33333

3 0.33333 0.66667-0.66667

4 0.00000 0.00000 0.00000 1.00

5 0.00000 0.00000 0.00000 0.00 1.00

6 0.00000 0.00000 0.00000 0.00 0.00 1.0

7 0.00000 0.00000 0.00000 0.50 0.00 0.5 1.000

8 0.00000 0.00000 0.00000 0.00 0.50 0.5 0.250 1.000

9 0.00000 0.00000 0.00000 0.25 0.25 0.5 0.625 0.625 1.125

10 0.00000 0.00000 0.00000 0.25 0.25 0.5 0.625 0.625 1.125 1.5625

1 1 2.00000
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2 2 1.00000

3 1 1.00000 2 1.00000 3 0.00000

4 1 -1.00000 4 1.50000

5 1 -1.00000 5 1.50000

6 2 -1.00000 4 0.500000 5 0.500000 6 2.00000

7 4 -1.00000 6 -1.00000 7 2.50000

8 5 -1.00000 6 -1.00000 7 0.500000 8 2.50000

9 7 -1.00000 8 -1.00000 9 4.28571

10 9 -2.28571 10 2.28571

Identity Inbreeding DiagofAinverse

1 -1.0000 2.0000

2 -1.0000 1.0000

3 -1.0000 0.0000

4 0.0000 1.5000

5 0.0000 1.5000

6 0.0000 2.0000

7 0.0000 2.5000

8 0.0000 2.5000

9 0.12500 4.2857

10 0.56250 2.2857

Wed 08/09/2004

6 Partial selfing



Female Parent 1 + ff r 1 + ff (1 + ff + r)/2

Male Parent r 1 + fm r (1 + fm + r)/2

Selfed 1 + ff r 1 +
1+ff
2

(1 + ff + r)/2

Crossed
1+ff+r

2
1+fm+r

2

1+ff+r

2
1 + r/2


Let s be the proportion selfed. The contribution of the female parent is then
(s + 1

2
(1 − s))af = 1+s

2
af . The contribution from the male parent is 1−s

2
am.

The diagonal element will be s(1+
1+ff
2

)+(1−s)(1+r/2) = 1+
s(1+ff )+(1−s)r

2
.

Thus, the non zero elements of pw are
(

1+s
2

1−s
2

)
and

q−1
w = 1 +

s(1+ff )+(1−s)r

2
−

(
1+s
2

1−s
2

) 1 + ff r

r 1 + fm


 1+s

2

1−s
2


= 1− 1

4
((1 + s2)(1 + ff ) + 2sr(1− s) + (1− s)2(1 + fm))

Now this expression for qw involves the covariance between the parents which
previously cancelled out and which is not easily available from the existing
algorithm. However, we expect that if the plant is outcrossed, the male parent
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is not known. We could therefore nominate a degree of relationship for seeds
collected in the wild, or just assume the male parent is unrelated.

As a starting point, ASReml assumes that if the male parent is unknown, there
is proportional selfing but if the male parent is identified, that a controlled
mating has occurred. This complicates the algorithm because in the former
case, the nonzero element of p is 1

2
(1 + s) while in the other case, there are

two values of 1
2

The following results from ASReml !METHOD 0 !SELF 0.3 !GIV !DIAG for
the pedigree displayed at the bottom.

1 1.0000

2 0.0000 1.0000

3 0.0000 0.0000 1.

4 1.0000 0.0000 0. 1.5000

5 0.6500 0.0000 0. 0.9750 1.2250

6 0.0000 0.6500 0. 0.0000 0.0000 1.1500

7 0.5000 0.3250 0. 0.7500 0.4875 0.5750 1.0000

8 0.3250 0.3250 0. 0.4875 0.6125 0.5750 0.5312 1.0000

9 0.4125 0.3250 0. 0.6188 0.5500 0.5750 0.7656 0.7656 1.2656

10 0.2681 0.2112 0. 0.4022 0.3575 0.3737 0.4977 0.4977 0.8227 1.1898

1 1 3.00000

2 2 1.58076

3 3 1.00000 1 -2.00000

4 4 3.45533

5 4 -1.09937 5 2.30672

6 2 -0.893471 4 0.740741 5 0.615385 6 2.73070

7 4 -1.48148 6 -1.48148 7 3.46296

8 5 -1.23077 6 -1.23077 7 0.500000 8 2.96154

9 7 -1.00000 8 -1.00000 9 2.64492

10 9 -0.992189 10 1.52644

Identity Female Male Inbreeding DiagofAinverse

1 0 0 0.0000 3.0000

2 0 0 0.0000 1.5808

3 0 0 0.0000 1.0000

4 1 1 0.50000 3.4553

5 4 0 0.22500 2.3067

6 2 0 0.15000 2.7307

7 4 6 0.0000 3.4630

8 5 6 0.0000 2.9615

9 7 8 0.26562 2.6449

10 9 0 0.18984 1.5264

Fri 17/09/2004
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7 Inbred lines

In this situation, after a cross is made, it is selfed a large number of times to
produce an inbred line. The procedure is basically as before except that the
inbreeding is always 1.

For the non-zero elements of pi being 1
2
and 1

2
, Ai =

 A1 A1pi

p′
iA1 2

 and

A−1
i =

A−1
1 + piqip

′
i − piqi

−piqi qi

 where q−1
i = 2 − p′

iA1pi = 1 − 1
2
amf . This

last term comes about from 2−
(

1
2

1
2

) 2 amf

amf 2


 1

2

1
2


The special cases are that where no parents are known, pi = (0) so that
q−1
i = 2 and if only one parent is known, pi contains a single 1

2
so that

q−1
i = 2− 1

2
21
2
= 1.5

The following results are from ASReml using the pedigree file displayed below
with qualifiers !METHOD 0 !INBRED 1.0 !GIV !DIAG where the !INBRED qua-
lifier implies inbred lines. Note that ’selfing’ is not permitted in the pedigree
with inbred lines as it will generate a singularity.

1 2.0000

2 0.0000 2.0000

3 0.0000 0.0000 2.00000

4 1.0000 0.0000 1.0000 2.0000

5 0.0000 1.0000 1.0000 0.5000 2.0000

6 0.5000 0.5000 1.0000 1.2500 1.2500 2.0000

7 0.7500 0.2500 1.0000 1.6250 0.8750 1.6250 2.0000

8 1.3750 0.1250 0.5000 1.3125 0.4375 1.0625 1.3750 2.0000

9 1.0625 0.1875 0.7500 1.4687 0.6562 1.3437 1.6875 1.6875 2.0000

10 0.7812 0.3437 0.8750 1.3594 0.9531 1.6719 1.6562 1.3750 1.6719 2.0

1 1 1.15000

2 2 0.750000

3 1 0.250000 2 0.250000 3 1.00000

4 1 -0.500000 3 -0.500000 4 2.00000

5 2 -0.500000 3 -0.500000 4 0.333333 5 1.33333

6 4 0.00000 5 -0.666667 6 2.76190

7 1 0.400000 4 -1.33333 6 -1.33333 7 3.86667

8 1 -0.800000 7 0.00000 8 2.40000

9 6 0.761905 7 -1.60000 8 -1.60000 9 3.96190

10 6 -1.52381 9 -1.52381 0 3.04762
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Identity Female Male Inbreeding DiagofAinverse

1 0 0 1.0000 1.1500

2 0 0 1.0000 0.75000

3 0 0 1.0000 1.0000

4 1 3 1.0000 2.0000

5 2 3 1.0000 1.3333

6 4 5 1.0000 2.7619

7 6 4 1.0000 3.8667

8 7 1 1.0000 2.4000

9 8 7 1.0000 3.9619

10 9 6 1.0000 3.0476

Thu 16/09/2004

For example, the coefficient 3.0476 = 1/(1− 43/64) where 43/64 = 1
2
a96 The

calculation of thes relationship required development of a recursive routine
which works as follows. Define three vectors H to hold the index of the higher
numbered parent, L to hold the index of the other parent, and c to hold the
contributions to relationship. Initialise a69 = 0, k = 1, H1 = 9, and L1 = 6.

While k > 0,

if Hk equals Lk, add ck to a and decrement k.

else identify sire and dam of Hk (s and d) and replace (Hk, Lk, ck) with
(max(s, Lk), min(s, Lk,

1
2
ck) and (Hk+1, Lk+1, ck+1) with (max(d, Lk), min(d, Lk,

1
2
ck) (but omit operations if s and/or d are 0, adjusting k accordingly).

H,L,c k=1 k=2 k=3 k=4 k=5 k=6 a

9,6,1

8,6,1/2 7,6,1/2

8,6,1/2 6,4,1/4 6,6,1/4

8,6,1/2 5,4,1/8 4,4,1/8 1/4

8,6,1/2 4,3,1/16 4,2,1/16 3/8

8,6,1/2 4,3,1/16 3,2,1/32 2,1,1/32 3/8

8,6,1/2 3,3,1/32 3,1,1/32 3/8

7,6,1/4 6,1,1/4 13/32

7,6,1/4 4,1,1/8 5,1,1/8 13/32

7,6,1/4 4,1,1/8 2,1,1/16 3,1,1/16 13/32

7,6,1/4 1,1,1/16 3,1,1/16 13/32

6,6,1/8 6,4,1/8 15/32

6,6,1/8 4,4,1/16 5,4,1/16 15/32

6,6,1/8 4,4,1/16 4,2,1/32 4,3,1/32 15/32

6,6,1/8 4,4,1/16 4,2,1/32 3,3,1/64 3,1,1/64 15/32

6,6,1/8 4,4,1/16 1,2,1/64 3,2,1/64 31/64

6,6,1/8 35/64

43/64
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While the ASReml syntax allows for an inbreeding coefficient less that one to
be specified, the algebra has not been worked through for that case.

8 Mixed Model equations

If y denotes the n × 1 vector of observations, the linear mixed model can be
written as

y = Xτ +Zu+ e (1)

where τ is the p× 1 vector of fixed effects, X is an n× p design matrix of full
column rank which associates observations with the appropriate combination
of fixed effects, u is the q × 1 vector of random effects, Z is the n × q de-
sign matrix which associates observations with the appropriate combination
of random effects, and e is the n× 1 vector of residual errors.

The model (1) is called a linear mixed model or linear mixed effects model. It
is assumed[

u
e

]
∼ N

([
0
0

]
,
[
G(γ) 0
0 R(ϕ)

])
(2)

where the matricesG andR are functions of parameters γ and ϕ, respectively.

Details of the AI algorithm for REML estimation can be found in several
places including Gilmour et al. (1995). It revolves around the mixed model
equations derived from the objective function

logfY (y | u ; τ ,R) + logfU (u ; G) .

which is the log-joint distribution of (Y ,u). Differentiating with respect to τ
and u leads to the mixed model equations (Robinson, 1991) which are given
by

X ′R−1X X ′R−1Z

Z ′R−1X Z ′R−1Z +G−1


 τ̂

ũ

 =

X ′R−1y

Z ′R−1y

 . (3)

These can be written as

Cβ̃ = W ′R−1y

13



where C = W ′R−1W +G∗, β = [τ ′ u′]′ and G∗ =

0 0

0 G−1

 .
The solution of (3) requires values for the variance parameters γ and ϕ. In
practice we replace γ and ϕ by their REML estimates γ̂ and ϕ̂.

The AI algorithm uses the trace((∂C) C−1) when calculating the score and
uses Y ′PY as the the Average Information matrix where y′Py is the usual
residual sum of squares and Y is a matrix of working variables, one for
each variance parameter, given by either (∂R) R−1e for parameters of R
or Z(∂G) G−1u for parameters of G.

Y ′PY is formed by an absorption process (Gilmour et al 1995) which is quite
efficient when C is sparse provided a judicious ordering is used. The other
part of the process requires calculation of trace((∂C) C−1). We only need the
elements of C−1 which correspond to non-zero elements in C when calculating
this trace since the derivative ∂C is zero for all zero elements of C. There is a
therefore a huge advantage in forming as few extra elements as possible when
forming the required elements of C−1. This is controlled by the order in which
the equations are processed.

The AI algorithm requires space for C−1 and for working variables and their
cross-products. ASReml uses the same memory to form the mixed model equa-
tions, absorb them and then hold the (partial) inverse.

For convenience, we have described the situation where both R and G are
positive definite but we in fact also allow special cases where G is singular or
negative definite (for example Thompson et al 2003).

9 Discussion
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Derivation of the Reduced Animal Model

Consider an animal model analysis which can be represented by the model

y = Xβ +Zu+ e

Var

u

e

 =

σ2
AA 0

0 σ2
EI


Letting γ = σ2

A/σ
2
E; λ = 1./γ, the mixed model equations can be represented

by X ′X X ′Z

Z ′X Z′Z+ λA−1


β

u

 =

X ′y

Z ′y



Now order the data file and pedigree file so that the last p rows relate to p
progeny with own data but no descendents in the data or pedigree file.

Represent the data/design as

ya Xa Za 0

yp Xp 0 Ip



and A−1 =

A−1
a +A−1

a BQB′A−1
a −A−1

a BQ

−QB′A−1
a Q

 noting that in this case of

a relationship matrix, Q is diagonal.

The elements of Q are calculated from the inbreeding coefficients of the pa-
rents as 1/(1 − (ajj + akk)/4) where ajj = 1 + ij and akk = 1 + ik and the
relationship matrix coefficients for the parents, with inbreeding coefficients ij
and ik respectively. The elements of B′A−1 are all zero except cells ij and ik
are 0.5.

The mixed model equations are then represented by


X ′

aXa +X ′
pXp X ′

aZa X ′
p

Z ′
aXa Z ′

aZa + λA−1
a + λA−1

a BQB′A−1
a −λA−1

a BQ

Xp −λQB′A−1
a I + λQ

×
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
β

ua

up

 =


X ′

avecya +X ′
pyp

Z ′
aya

yp


Absorbing the progeny equations givesX ′

aXa +X ′
p[I − (I + λQ)−1]Xp X ′

aZa +X ′
p(I + λQ)−1λQB′A−1

a

Z′
aXa + λA−1

a BQ(I + λQ)−1Xp Z ′
aZa + λA−1

a + λA−1
a BQ[I − (I + λQ)−1λQ]B′A−1

a

×

 β

ua

 =

 X ′
aya +X ′

p[I − (I + λQ)−1]yp

Z ′
aya + λA−1

a BQ(I + λQ)−1yp


Let W p = I − (I + λQ)−1 = (I + λQ− I)(I + λQ)−1 = λQ(I + λQ)−1

λQ[I − (I + λQ)−1λQ] = λQ(I + λQ)−1[I + λQ− λQ] = W p

giving X ′
aXa +X ′

pW pXp X ′
aZa +X ′

pW pB
′A−1

a

Z ′
aXa +A−1

a BW pXp Z ′
aZa + λA−1

a +A−1
a BW pB

′A−1
a

×

 β

ua

 =

 X ′
aya +X ′

pW pyp

Z ′
aya +A−1

a BW pyp



At this point, let Zp = B′A−1
a and the equations become

X ′
aXa +X ′

pW pXp X ′
aZa +X ′

pW pZp

Z ′
aXa +Z ′

pW pXp Z ′
aZa + λA−1

a +Z ′
pW pZp

×

 β

ua

 =

X ′
aya +X ′

pW pyp

Z ′
aya + Z′

pW pyp


So, we have a reduced set of equations formed in the normal way with respect
to the parental data, and with weights W p and a special design matrix (Zp)
for the offspring data.

The weights are derived from the diagonal of the inverse of the A matrix and
the special design matrix is from the parent/offspring block of the A-inverse.
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Consider a six animal pedigree

201 101 102

202 101 102

301 201 202

302 201 202

The A-inverse (obtained from ASReml using the !GIV qualifier) is

101 102 201 202 301 302

101 2

102 1 2

201 -1 -1 3

202 -1 -1 1 3

301 0 0 -1 -1 2

302 0 0 -1 -1 0 2

So Q =

 2 0

0 2

 ;W p = λQ(I + λQ)−1

Za is defined inASReml as id.Parent,Zp is defined as and(sire.Proj.Half)
and(Half.dam.Proj) where Half is a variate with values all 0.5 and the and()
function overlays the design matrix.

So, to use the reduced animal model, we need to augment the data file by
the weights. The !DIAG qualifier used on the whole pedigree will write the Q
values to ainverse.dia. Alternatively, the Q values can be worked out from
the inbreeding coefficients of the parents.

Extension to Maternal Grandsire model

Consider we have an existing relationship matrix and its inverse involving
MGS ( row 1) and SIRE (row 2) represented by

 a11 a12

a21 a22


−1

=

 a11 a12

a21 a22



. Add rows for an unrelated MGD (row 3) and their progeny DAM (row
4).
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

a11 + qd/4 a12 0 + qd/4 0− qd/2

a21 a22 0 0

0 + qd/4 0 1 + qd/4 0− qd/2

0− qd/2 0 0− qd/2 0 + qd


where qd = 1/(1− (a11 + a33)/4) and a33 = 1 so that qd = 4/(3− a11).

We no longer require MGD so absorb row 3 to give
a11 + 1/(4− a11) a

12 −2/(4− a11)

a21 a22 0

−2/(4− a11) 0 4/(4− a11)


since

qd[1− qd/4/(1 + qd/4)] = qd[1− 1/(3− a11)/[(3− a11 + 1)/(3− a11)])

= qd[1− 1/(4− a11)] = 4/(4− a11)

Adding the progeny of SIRE and DAM as new row 4 gives

a11 + 1/(4− a11) a12 −2/(4− a11) 0

a21 a22 + qp/4 0 + qp/4 −qp/2

−2/(4− a11) 0 + qp/4 4/(4− a11) + qp/4 −qp/2

0 −qp/2 −qp/2 qp


where qp = 1/(1− (a22 + a44)/4)
and a44 = 1 since its dam was unknown so that qp = 4/(3− a22).

Finally, we absorb DAM (row 3).

Let

D = 1/[4/(4− a11) + qp/4]

= 1/[4/(4− a11) + 1/(3− a22)]

= (4− a11)(3− a22)/(4(3− a22) + 4− a11)

= (4− a11)(3− a22)/(16− 4a22 − a11)

Cell 1, 1 becomes

a11 + 1/(4− a11)− 4D/(4− a11)
2 = a11 + (1− 4(3− a22)/(16− 4a22 − a11))/(4− a11)
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= a11 + 1/(16− 4a22 − a11)

Cell 2, 1=Cell 1, 2 becomes
a21 + 2D/(4− a11)/(3− a22) = a21 + 2/(16− 4a22 − a11).

Cell 2, 2 becomes

a22 + qp/4−Dq2p/16 = a22 + (1− (4− a11)/(16− 4a22 − a11))/(3− a22)

= a22 + 4/(16− 4a22 − a11)

Cell 4, 1 (1, 4) becomes
−2Dqp/2/(4− a11) = −4/(16− 4a22 − a11).

Cell 4, 2 (2, 4) becomes

−qp/2 +Dq2p/8 = −2(1− (4− a11)/(16− 4a22 − a11))/(3− a22)

= −8/(16− 4a22 − a11).

Cell 4, 4 becomes
qp −Dq2p/4 = qp(1−Dqp/4) = 16/(16− 4a22 − a11).

Let Qp = 16/(16− 4a22 − a11) and the matrix becomes
a11 +Qp/16 a12 +Qp/8 −Qp/4

a21 +Qp/8 a22 +Qp/4 −Qp/2

−Qp/4 −Qp/2 Qp



For non inbred parents, a11 = a22 = 1 and Qp = 16/11

Consequently, we can also use the RAM method with a maternal grandsire
pedigree by using the model terms

Za is defined inASReml as id.Parent,Zp is defined as and(Half.sire*Proj)
and(mgs.Proj,0.25)

and using weights for the progeny records calculated using Qp = 16/(16 −
4a22 = a11 = 16/(11− 4is − imgs).

Estimating the variance parameters under the RAM model

As formulated, the RAM model cannot be used to estimate the variance ratio
because ASReml cannot handle the differential of the weight with respect to
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the variance ratio. It can however be estimated by putting the extra progeny
variance into an extra variance component. It is not obvious that this would
provide any computational advantage over using the IAM since the original
order (number of) of equations is retained.

The expanded equations become
X ′

aXa +X ′
pXp X ′

aZa +X ′
pZp X ′

p

Z ′
aXa +Z ′

pXp Z ′
aZa + λA−1

a +Z ′
pZp Z ′

p

Xp Zp I + λQ

×


β

ua

ϵp

 =


X ′

aya +X ′
pyp

Z ′
aya +Z ′

pyp

yp


noting that λ appears in two places. The extra random effect is then the
deviation of the animal’s BLUP from its midparent value.

An example

Following is a data file (anim.ped) generated in S-Plus containing 4 genera-
tions. We then show an ASReml job which fits the full animal model and
estimates the variance components, and an ASReml job which fits the redu-
ced animal model to estimated the BLUP values.

The first 70 lines of anim.ped relate to Parents, the remaining 70 lines relate to
progeny without descendents. The first three columns contain the full pedigree.
The column ramid is like animal except that it is zero for the progeny lines.
The progeny variable is 0 for parents, 1 for progeny (it could be created from
the ramid column via transformation). ibv is the inbreeding associated with
the animal (times 32 to make it an integer) and is there just for interest. The
progeny rows of Q contain the diagonal of the inverse of the full A inverse for
these animals.

animal sire dam ramid y progeny ibv Q

11 1 4 11 10.3908857477546 0 0 0

12 1 5 12 11.1104657392240 0 0 0

13 2 6 13 11.7779552726571 0 0 0

14 2 4 14 8.6741538043638 0 0 0

15 2 7 15 7.91890378030102 0 0 0

16 3 5 16 9.71655429296733 0 0 0

17 3 8 17 10.8904473767759 0 0 0

18 3 9 18 9.61207680583325 0 0 0

19 3 6 19 10.5227820706866 0 0 0
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20 1 10 20 9.34303055021789 0 0 0

21 1 9 21 9.36021403905914 0 0 0

22 1 10 22 11.0300042996657 0 0 0

23 2 8 23 10.2060540668193 0 0 0

24 2 9 24 10.3261486305873 0 0 0

25 2 10 25 10.1435062911543 0 0 0

26 2 4 26 9.38946394377953 0 0 0

27 3 5 27 10.3082467403304 0 0 0

28 3 6 28 10.7775996888753 0 0 0

29 3 7 29 9.45255896227042 0 0 0

30 3 8 30 10.0005912543929 0 0 0

31 19 26 31 10.6833370443366 0 0 0

32 12 24 32 10.5686070634204 0 0 0

33 20 24 33 11.1517440567010 0 0 0

34 16 30 34 10.0286689932973 0 4 0

35 19 22 35 11.1329794620133 0 0 0

36 14 23 36 9.80581432197048 0 4 0

37 15 25 37 10.0165440616599 0 4 0

38 16 27 38 9.63089952169726 0 8 0

39 15 27 39 9.07073787302496 0 0 0

40 20 24 40 9.46343346201765 0 0 0

41 13 25 41 10.9546878217872 0 4 0

42 11 21 42 9.69861973870184 0 4 0

43 16 23 43 9.1415847358994 0 0 0

44 12 21 44 8.95129961418688 0 4 0

45 18 25 45 11.2014778719284 0 0 0

46 16 21 46 10.0834481927450 0 0 0

47 19 21 47 9.36277506264529 0 0 0

48 11 25 48 11.3906966649587 0 0 0

49 16 26 49 9.3760267049459 0 0 0

50 14 30 50 8.9478418940027 0 0 0

51 14 22 51 10.5752778989598 0 0 0

52 12 22 52 8.636365924336 0 4 0

53 14 28 53 10.5596974215369 0 0 0

54 11 24 54 10.6235872497733 0 0 0

55 17 30 55 10.7208445263010 0 8 0

56 11 30 56 11.1845127701036 0 0 0

57 13 21 57 10.6176220363483 0 0 0

58 18 29 58 10.2376357012145 0 4 0

59 15 29 59 9.50752581920866 0 4 0

60 14 25 60 11.5727423713477 0 4 0

61 11 29 61 10.3706427153618 0 0 0

62 12 25 62 9.84133070107534 0 0 0

63 15 28 63 9.56209348619 0 0 0

64 15 28 64 9.48594143828686 0 0 0

65 19 26 65 10.5423939080058 0 0 0

66 15 22 66 9.51586858551116 0 0 0
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67 14 30 67 9.43485295607768 0 0 0

68 16 23 68 9.75749335918498 0 0 0

69 14 23 69 9.49082318556744 0 4 0

70 11 22 70 10.180415181553 0 4 0

71 14 28 71 10.5015621557079 0 0 0

72 15 28 72 9.38552780572869 0 0 0

73 12 25 73 10.0811885517726 0 0 0

74 20 24 74 9.98029685584483 0 0 0

75 18 27 75 10.3921923488348 0 4 0

76 12 21 76 11.2095368426887 0 4 0

77 14 30 77 11.4028159057297 0 0 0

78 16 27 78 9.03775130221661 0 8 0

79 18 22 79 11.3811226071947 0 0 0

80 18 25 80 7.8124711265838 0 0 0

81 37 54 0 9.41301907943905 1 2 2.1333

82 32 56 0 10.9478210963465 1 1 2.0000

83 43 51 0 10.4108227824721 1 1 2.0000

84 38 63 0 9.50198191412658 1 2 2.2857

85 49 56 0 10.1836742661691 1 2 2.0000

86 36 67 0 9.43561878646791 1 6 2.1333

87 39 54 0 8.96051177807472 1 1 2.0000

88 37 57 0 10.6006629223889 1 2 2.1333

89 40 61 0 10.8951841890337 1 1 2.0000

90 31 59 0 11.6171466747894 1 2 2.1333

91 34 71 0 8.82615618148376 1 2 2.1333

92 48 75 0 10.0784745397543 1 0 2.1333

93 39 62 0 10.1091215894326 1 2 2.0000

94 44 73 0 10.0999858381977 1 5 2.1333

95 32 74 0 8.91637153793524 1 5 2.0000

96 49 74 0 9.98534429588077 1 1 2.0000

97 42 80 0 9.72385207966892 1 1 2.1333

98 50 74 0 10.4435420931982 1 1 2.0000

99 40 51 0 10.1924373987657 1 3 2.0000

100 46 57 0 9.61540429177981 1 4 2.0000

101 49 69 0 10.2832108644091 1 3 2.1333

102 44 51 0 10.7724842239921 1 2 2.1333

103 40 53 0 9.84204430655675 1 1 2.0000

104 39 57 0 7.91867388041925 1 1 2.0000

105 36 62 0 10.1864922259464 1 2 2.1333

106 44 80 0 10.3704117751821 1 1 2.1333

107 43 64 0 10.4920572539863 1 2 2.0000

108 42 72 0 8.36290471333196 1 0 2.1333

109 45 79 0 10.2650472908691 1 5 2.0000

110 42 56 0 10.2986886395126 1 5 2.1333

111 44 80 0 10.6009452530656 1 1 2.1333

112 38 74 0 8.67042728685292 1 0 2.2857

113 40 72 0 11.0634565743273 1 1 2.0000
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114 31 61 0 8.89534464048755 1 2 2.0000

115 49 71 0 10.8962430535315 1 3 2.0000

116 39 62 0 9.18754090244638 1 2 2.0000

117 46 66 0 10.8691783663719 1 1 2.0000

118 36 77 0 10.2807432360335 1 6 2.1333

119 39 56 0 9.10687842385982 1 1 2.0000

120 46 52 0 11.8720666576208 1 3 2.1333

121 47 72 0 10.1850603552501 1 2 2.0000

122 46 54 0 9.6558797999729 1 2 2.0000

123 32 57 0 9.22850429171406 1 3 2.0000

124 45 66 0 8.15136825542446 1 2 2.0000

125 46 73 0 7.88941183740888 1 2 2.0000

126 39 53 0 9.01615309035975 1 2 2.0000

127 31 55 0 10.3523192574918 1 2 2.2857

128 43 79 0 10.2148135862004 1 1 2.0000

129 44 76 0 8.50957680401474 1 10 2.2857

130 32 54 0 9.53000303131414 1 5 2.0000

131 44 52 0 9.33721586426789 1 7 2.2857

132 36 78 0 8.48635421527905 1 0 2.4615

133 31 77 0 11.3329385837141 1 3 2.0000

134 37 56 0 10.4134913778961 1 0 2.1333

135 46 70 0 9.56323081820872 1 2 2.1333

136 47 61 0 9.730332323743 1 2 2.0000

137 50 79 0 8.65562598882075 1 1 2.0000

138 35 54 0 9.97523579491704 1 1 2.0000

139 34 79 0 8.2347003348346 1 2 2.1333

140 49 60 0 10.2526254965016 1 3 2.1333

141 46 69 0 9.72524883824503 1 0 2.1333

142 34 70 0 10.2568000361074 1 0 2.2857

143 32 69 0 10.2691991448205 1 2 2.1333

144 44 79 0 7.99985920710376 1 3 2.1333

145 45 51 0 10.1699822966765 1 2 2.0000

146 31 61 0 9.35249803893117 1 2 2.0000

147 50 80 0 9.2115314170863 1 2 2.0000

148 42 63 0 10.7952258148718 1 0 2.1333

149 39 57 0 9.8647096375117 1 1 2.0000

150 45 80 0 10.4279842491734 1 8 2.0000

The first job fits the animal model (estimating the variance component).

Analysis by animal model

animal !P

sire !P

dam !P

ramid Y

anim.ped !skip 1 !make !diag

23



anim.ped !skip 1 !extra 3

Y ~ mu !r anim

An extract from the .asr file follows.

ASReml 1.57 [04 Dec 2003] Analysis by animal model

16 Jan 2004 14:46:52.155 64.00 Mbyte Windows anim

Folder: C:\data\proj\agbu

animal !P

sire !P

dam !P

Reading pedigree file anim.ped : skipping 1 lines

PEDIGREE [anim.ped ] has 150 identities, 547 Non zero elements

QUALIFIERS: !SKIP 1 !Evec{X}TRA 3

Reading anim.ped FREE FORMAT skipping 1 lines

Univariate analysis of Y

Using 140 records of 140 read

Model term Size Minimum Mean Maximum #zero #miss

1 animal !P 150 3.000 80.24 150.0 0 0

2 sire !P 150 2.000 25.43 50.00 0 0

3 dam !P 150 1.000 43.07 80.00 0 0

4 ramid 11.00 22.75 80.00 70 0

5 Y Variate 7.812 9.944 11.87 0 0

6 mu 1

Forming 151 equations: 1 dense.

Initial updates will be shrunk by factor 0.316

1 LogL=-53.3627 S2= 0.70623 139 df 0.1000 1.000

2 LogL=-53.3585 S2= 0.70315 139 df 0.1060 1.000

3 LogL=-53.3550 S2= 0.69912 139 df 0.1140 1.000

4 LogL=-53.3538 S2= 0.69537 139 df 0.1216 1.000

5 LogL=-53.3538 S2= 0.69485 139 df 0.1226 1.000

6 LogL=-53.3538 S2= 0.69479 139 df 0.1228 1.000

7 LogL=-53.3538 S2= 0.69478 139 df 0.1228 1.000

8 LogL=-53.3538 S2= 0.69478 139 df 0.1228 1.000

Final parameter values 0.12278 1.0000

Degrees of Freedom and Stratum Variances

67.43 0.844141 1.8 1.0

71.57 0.694780 0.0 1.0

Source Model terms Gamma Component Comp/SE % C

animal 150 150 0.122781 0.853059E-01 0.80 0 P

Variance 140 139 1.00000 0.694780 5.98 0 P

Analysis of Variance NumDF DenDF F-incr F-adj Prob

6 mu 1 2.6 5366.78 NA NA
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Estimate Standard Error T-value T-prev

6 mu

1 9.97036 0.136099 73.26

1 animal 150 effects fitted

Finished: 16 Jan 2004 14:46:53.737 LogL Converged

The !DIAG qualifier caused the elements of Q to be written to ainverse.dia

from whence they were copied into the data file. The Q values can also be
worked out directly (not within ASReml) from the inbreeding coefficients of
the parents. For example, 81 has parents 37 and 54 with inbreeding coeffi-
cients of 4/32 and 0/32 respectively. q81 = 1/(1− (1 + 4/32 + 1 + 0/32)/4) =
32/(16 − 1) = 2.13333. For non inbred parents, the coefficient is 2. 84 has
parents 38 and 63 with inbreeding coefficients of 8/32 and 0/32 respectively.
q84 = 1/(1− (1 + 8/32 + 1 + 0/32)/4) = 32/(16− 2) = 2.28571.

The job to estimate the effects using the reduced animal model is

Analysis by Reduced animal model

! From animal model, gamma = 0.122781

animal

sire !P !*V6

dam !P !*V6

ramid !P

Y

Progeny Parent !=1 !-Prog

Weight !/0.122781 !+1 !^-1 !-1 !*-1 !+Parent

ram.ped !skip 1

anim.ped !skip 1 !MAvec{X}IT 1 !BLUP 2

Y !wt We ~ mu !r ramid .122781 , and(sire,0.5) and(dam,0.5)

This job uses the same data file but the pedigree file just contains the parents
(the first 70 lines of anim.ped)

The sire and dam fields are multiplied by Progeny (V6) to anihilate the
information in them in the parent records. ibv is overwritten by a created
variable Parent which is the complement of Progeny and is subsequently
used to give a weight of 1. to the parent records.

Q is converted to the weight using −((Q/γ + 1)−1 − 1). Since Q was supplied
as 0 for the parents, this generates 0 for the parental records hence we then
added the Parent indicator variable to set the weight to 1 for the parental
records.
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Running this job gave

ASReml 1.57 [04 Dec 2003] Analysis by Reduced animal model

16 Jan 2004 20:10:44.768 64.00 Mbyte Windows ram

! From animal model, gamma = 0.122781

Folder: C:\data\proj\agbu

sire !P !*V6

dam !P !*V6

ramid !P

Progeny Parent !=1 !-Prog Weight !/0.122781 !+1 !^-1 !-1 !*-1 !+Parent

A-inverse retrieved from ainverse.bin

PEDIGREE [ram.ped ] has 80 identities, 271 Non zero elements

QUALIFIERS: !SKIP 1 !MAvec{X}IT 1 !BLUP 2

Reading anim.ped FREE FORMAT skipping 1 lines

Univariate analysis of Y

Using 140 records of 140 read

Model term Size Minimum Mean Maximum #zero #miss

1 animal 11.00 80.50 150.0 0 0

2 sire !P 80 31.00 20.43 50.00 70 0

3 dam !P 80 51.00 32.62 80.00 70 0

4 ramid !P 80 3.000 22.49 80.00 70 0

5 Y Variate 7.812 9.944 11.87 0 0

6 Progeny 1.000 0.5000 1.000 70 0

7 Parent 1.000 0.5000 1.000 70 0

8 Weight Weight 0.9422 0.9721 1.000 0 0

9 mu 1

10 and(sire,0.5) 80

11 and(mgs,0.5) 80

Forming 81 equations: 1 dense.

1 LogL=-53.3538 S2= 0.69478 139 df

Warning: The estimation was ABORTED because the !BLUP qualifier was specified.

The Standard Errors of variance components (and solutions?)

and derived quantities are wrong.

Use !MAvec{X}IT 1 instead of !BLUP to get correct standard errors.

...

Estimate Standard Error T-value T-prev

9 mu

1 9.97036 0.136099 73.26

4 ramid 80 effects fitted

Finished: 16 Jan 2004 20:10:45.899 BLUP run done

Notice that the LogL, S2 and mu values agree with the full animal model
results.

Furthermore, the BLUPS for the parents agree. The following shows some
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values.

----- anim.sln ---- --- ram.sln -------

mu 1 9.970 0.1361 9.970 0.1361

animal 4 0.6236E-01 0.2705 0.6236E-01 0.2705

animal 1 0.2862E-01 0.2606 0.2862E-01 0.2606

animal 11 0.1169 0.2535 0.1169 0.2535

animal 5 -0.1774 0.2681 -0.1774 0.2681

animal 12 -0.6694E-01 0.2497 -0.6694E-01 0.2497

animal 6 0.2221 0.2737 0.2221 0.2737

animal 2 -0.1436E-01 0.2607 -0.1436E-01 0.2607

animal 13 0.2136 0.2643 0.2136 0.2643

animal 14 -0.2214E-02 0.2482 -0.2214E-02 0.2482

animal 7 -0.2042 0.2755 -0.2042 0.2755

animal 37 -0.7297E-01 0.2714 -0.7297E-01 0.2714

animal 54 0.2736E-01 0.2599 0.2736E-01 0.2599

animal 70 0.1271 0.2727 0.1271 0.2727

animal 71 0.8816E-01 0.2644 0.8816E-01 0.2644

animal 72 -0.1188 0.2614 -0.1188 0.2614

animal 73 -0.1705E-01 0.2631 -0.1705E-01 0.2631

animal 74 -0.2541E-01 0.2601 -0.2541E-01 0.2601

animal 75 -0.1041 0.2768 -0.1041 0.2768

animal 76 -0.5544E-01 0.2693 -0.5544E-01 0.2693

animal 77 0.1469 0.2615 0.1469 0.2615

animal 78 -0.2678 0.2840 -0.2678 0.2840

animal 79 -0.1235E-01 0.2592 -0.1235E-01 0.2592

animal 80 -0.8484E-01 0.2598 -0.8484E-01 0.2598

animal 81 -0.5190E-01 0.2748

animal 82 0.1257 0.2744

animal 83 0.4467E-01 0.2753

animal 84 -0.1789 0.2732

animal 85 0.6887E-01 0.2767

ASReml does not work out the Progeny breeding values but they can be
obtained as follows. Animal 81 has parents 37 and 54 whose BLUPS are

animal 37 -0.7297E-01 0.2714

animal 54 0.2736E-01 0.2599

and has residual of

71 9.9476 -0.5345 1.000

So its BLUP = 0.5(-.07297+.02736) + 1/(1+Q)(-.5345) where Q = 2.1333/.122781
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= 17.37484

BLUP = 0.5(-.04561) -.02909 = -.02280-.02909 = -0.05189 which compares
well with the animal model solution.

Further checking

Modifying pedigree of the last three animals, the last three lines of the data
file now read

147 50 80 0 9.2115314170863 1 0 2 2.0000

148 42 0 0 10.7952258148718 1 2 0 1.3913

149 0 57 0 9.8647096375117 1 0 1 1.3333

150 0 0 0 10.4279842491734 1 0 8 1.0000

where the Q values have also been updated to reflected the changed pedigree
(diagonal elements of A−1.

Running the IAM on the revised data gave LogL=-53.2775, S2=0.68607 and
gamma=0.138732. Selected BLUPS are

animal 31 0.1804 0.2715

animal 42 -0.5272E-01 0.2795

animal 50 -0.9671E-01 0.2716

animal 57 0.1613E-02 0.2722

animal 61 -0.2036E-01 0.2743

animal 80 -0.1335 0.2739

animal 147 -0.1579 0.2899

animal 148 0.4939E-01 0.2824

animal 149 -0.1071E-01 0.2850

animal 150 0.5383E-01 0.2896

Re running the RAM job (referring to the modified data file and with gamma=0.138732)
gave identical values for LogL, S2, gamma and the BLUPS. The BLUPS for
the last 4 animals are given by

147: (-0.09671-.1335)/2 +(-.6595)/(1+2./.138732)=-.15788

148: (-0.05272+0.000)/2 +(0.8355)/(1+1.3913/.138732)=0.049397

149: (0.00+.001613)/2 +(-.1222)/(1+1.3333/.138732)=-.01071077

150: (0.00+0.00)/2 +(0.4419)/(1+1./.138732)=0.053837

Extension to Maternal Grandsire model

The machinery also works for the maternal grandsire model. Using the same
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data file except for the Q column, we compare the results from a direct MGS
analysis performed using

Analysis by animal model - Maternal grandsires pedigree

animal !P

sire !P

mgs !P

ramid Y

anim.mgs !skip 1 !mgs

anim.mgs !skip 1 !extra 3

Y ~ mu !r anim

and a RAM model analysis using

Analysis by Reduced animal model : Maternal grandsire pedigree

! From animal model, gamma = 0.245788

animal

sire !P !*V6

mgs !P !*V6

ramid !P

Y

Progeny Skip Parent !=1 !-Prog

Weight !/16 !*0.245788 !^-1 !V10=1 !+V9 !V9 !/V10 !+Parent

ram.ped !skip 1 !MGS !DIAG

anim.mgs !skip 1 !MAvec{X}IT 1 !BLUP 2

Y !wt We ~ mu !r ramid .245788 , and(sire,0.5) and(mgs,0.25)

As part of this exercise, I made ASReml report inbreeding coefficients as an
extension of the !DIAG qualifier output. Previous versions printed the diagonal
elements of A−1 to AINVERSE.DIA. The new version also prints the inbreeding
coefficients. After an initial run of the second job to obtain the inbreeding
coefficients, I calculated 11− 4is − imgs for the progeny records and placed it
in the 9th data field. Transformations then converted this to the weight.

Portion of the output from the IAM run follows:

ASReml 1.58 [20 Jan 2004] Analysis by animal model

8 LogL=-52.9871 S2= 0.62605 139 df 0.2458 1.000

Source Model terms Gamma Component Comp/SE % C

animal 290 290 0.245788 0.153877 1.06 0 P

Variance 140 139 1.00000 0.626054 4.46 0 P

Estimate Standard Error T-value T-prev

6 mu 1 9.96253 0.125665 79.28
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1 animal 290 effects fitted

Finished: 28 Jan 2004 13:52:22.651 LogL Converged

The RAM model gave equivalent results:

ASReml 1.58 [20 Jan 2004] Analysis by Reduced animal model

1 LogL=-52.9871 S2= 0.62605 139 df

Estimate Standard Error T-value T-prev

10 mu 1 9.96253 0.125665 79.28

4 ramid 150 effects fitted

Finished: 28 Jan 2004 13:53:21.165 BLUP run done

Following is a comparison of breeding values. ASReml fits the maternal gran-
sire model at present by inserting a dummy DAM for each offspring. Given the
algebra in chapter 1, it would be possible to modify the Ainverse algorithm to
directly form the MGS Ainverse without inserting the dummy dams.

Identity IAM-solutions RAM_solutions

4 0.3351E-01 0.3818 0.3351E-01 0.3818

999999998 0.1122 0.3732 0.1122 0.3732

1 0.1314 0.3435 0.1314 0.3435

11 0.2491 0.3183 0.2491 0.3183

5 -0.8852E-01 0.3812 -0.8852E-01 0.3812

999999994 -0.3013E-01 0.3726 -0.3013E-01 0.3726

12 0.6950E-01 0.3145 0.6950E-01 0.3145

6 0.2155 0.3831 0.2155 0.3831

999999991 0.2758 0.3780 0.2758 0.3780

2 -0.2119E-01 0.3390 -0.2119E-01 0.3390

13 0.3514 0.3366 0.3514 0.3366

999999988 -0.1295E-01 0.3709 -0.1295E-01 0.3709

14 -0.5668E-01 0.3090 -0.5668E-01 0.3090

7 -0.1837 0.3847 -0.1837 0.3847

.. .. .. .. ..

77 0.2457 0.3399 0.2457 0.3399

999999855 -0.1147 0.3707 -0.1147 0.3707

78 -0.2681 0.3473 -0.2681 0.3473

999999853 0.1617 0.3706 0.1617 0.3706

79 0.1154 0.3389 0.1154 0.3389

999999851 -0.9385E-01 0.3705 -0.9385E-01 0.3705

80 -0.2626 0.3390 -0.2626 0.3390

999999849 0.3336E-01 0.3717

81 -0.1087 0.3445 -0.10864

999999847 0.2351 0.3716

82 0.2383 0.3451 0.23831

999999845 0.1202 0.3718

83 0.5213E-01 0.3463 0.05212
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999999843 -0.1291 0.3721

84 -0.2099 0.3448 -0.20990

.. .. ..

147 -0.2627 0.3463 -0.26271

999999715 -0.3639E-01 0.3722

148 0.7755E-01 0.3433 0.07754

999999713 0.9237E-01 0.3720

149 -0.2316 0.3438 -0.23162

999999711 -0.9452E-01 0.3708

150 0.6621E-01 0.3499 0.06621

Again, ASReml does not work out the progeny values directly but they are
easily obtained from the parental blups and the residual as
BLUP=Sire/2+MGS/4+Res/(1+Q/0.245788).

Pedigree Sire MGS Residual 1/(16Q) BLUP

81 37 54 -0.1457 0.1480 -0.5136 10.75 -0.10864

82 32 56 0.05798 0.3324 0.8732 11. 0.23831

83 43 51 -0.1133 0.1673 0.4631 11. 0.05212

84 38 63 -0.2315 -0.2120 -0.2918 10.6875 -0.20990

147 50 80 -0.2291 -0.2626 -0.5708 11. -0.26271

148 42 63 0.01169 -0.2120 0.8798 10.75 0.07754

149 39 57 -0.5885 0.1601 0.1564 11. -0.23162

150 45 80 0.1288 -0.2626 0.4667 11. 0.06621

RAM estimation

The ASReml job to estimate the variance ratio using the RAM modelling is

Analysis by Reduced animal model

! From animal model, gamma = 0.122781

animal

sire !P !*V6

dam !P !*V6

ramid !P

Y

Progeny #Skip Parent !=1 !-Prog Weight !/0.122781 !+1 !^-1 !-1 !*-1 !+Parent

ram.ped !skip 1

ram.giv # Diagonal matrix containing Q

anim.ped !skip 1 !VCC
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Y ~ mu !r ramid .122781 , and(sire,0.5) and(dam,0.5) uni(Prog,1,70)

0 0 1

uni 1

uni 0 GIV1 .122781

+ 2 7

which produced the following results:

ASReml 1.58 [20 Jan 2004] Analysis by Reduced animal model

02 Feb 2004 14:52:33.287 64.00 Mbyte Windows rame

! From animal model, gamma = 0.122781

Folder: C:\data\proj\agbu

sire !P !*V6

dam !P !*V6

ramid !P

Reading pedigree file ram.ped : skipping 1 lines

PEDIGREE [ram.ped ] has 80 identities, 271 Non zero elements

Reading ram.giv skipping 0 header lines

Inverse G structure of 70 rows having 70 non zero cells read from ram.giv

QUALIFIERS: !SKIP 1 !VCC

Reading anim.ped FREE FORMAT skipping 1 lines

Univariate analysis of Y

Using 140 records of 140 read

Model term Size Minimum Mean Maximum #zero #miss

1 animal 11.00 80.50 150.0 0 0

2 sire !P 80 31.00 20.43 50.00 70 0

3 dam !P 80 51.00 32.62 80.00 70 0

4 ramid !P 80 3.000 22.49 80.00 70 0

5 Y Variate 7.812 9.944 11.87 0 0

6 Progeny 1.000 0.5000 1.000 70 0

7 mu 1

8 and(sire,0.5) 80

9 and(dam,0.5) 80

10 uni(Prog,1,70) 70 1.000 0.5000 1.000 70 0

70 ram.giv 0.1228

Structure for uni(Prog,1,70) has 70 levels defined

Forming 151 equations: 1 dense.

Initial updates will be shrunk by factor 0.316

For setting constraints, the variance parameters are numbered 2 to 7

1 LogL=-53.3538 S2= 0.69478 139 df

2 LogL=-53.3538 S2= 0.69478 139 df

Source Model terms Gamma Component Comp/SE % C

ramid 80 80 0.122782 0.853063E-01 0.80 0 P 2
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Variance 140 139 1.00000 0.694780 5.98 0 P

uni(Prog,1,70) ram.giv 70 0.122782 0.853063E-01 0.00 0 C 2

Estimate Standard Error T-value T-prev

7 mu

1 9.97036 0.136099 73.26

4 ramid 80 effects fitted

10 uni(Prog,1,70) 70 effects fitted

Finished: 02 Feb 2004 14:52:34.419 LogL Converged

Simulated Tree example

This exercise was stimulated by a comparison of Treeplan with ASReml in
which ASReml took 30 times longer than Treeplan and this was attributed to
the use of the reduced animal model.

Following are results from ASReml using a simulated data set with size and
structure somewhat like that used in the comparison with Treeplan. In parti-
cular, we have 71000 progeny of 500 parents (randomly allocated to progeny).
For the exercise, parents are unrelated. The progeny have been allocated to
71 groups of 1000 each. For the exercise, there is no data on parents.

The following table compares 6 runs. The greatest amount of time is taken
forming the A-inverse matrix (about 126 seconds) for the IAM-1 run. Runs
IAM-2 and IAM-3 used the A-inverse formed when IAM-1 was run. It took
13 seconds to read the data and set up the design matrix (the data was held
as a .csv file). IAM-4 uses a different subroutine to form the A-inverse.

The default in ASReml is to seek to find an optimum equation order to use.
This process took 8 seconds but was omitted in IAM-3 as the natural order of
equations [groups, parents, progeny] is ideal.

With RAM, we trade a smaller system of equations with a more complex
design matrix. The reduced size of the Ainverse matrix means that little time
is taken forming A-inverse (0.04 seconds?) but it takes a little (2s) longer to
set up the design matrix. The more complex design matrix means it takes a
little longer to form the SSP which is now much more dense. Processing it is
now a second longer although finding the order is much quicker.

Writing the solutions is slightly faster because BLUPS for the PROGENY are
not reported.

Process IAM-1 IAM-2 IAM-3 IAM-4 RAM-1 RAM-2

Getting Started 129.406 13.179 13.079 21.451 15.152 15.112

R&Gformed 0.150 0.150 0.160 0.180 0.030 0.030

SSP formed 0.070 0.070 0.070 0.060 0.591 0.631
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Add Ginverse 0.090 0.090 0.090 0.090 0.010 0.000

Order found 8.372 8.412 - - 0.881 0.901

SSP absorbed 5.308 5.298 4.336 4.306 6.219 6.219

Iteration complete 0.120 0.090 0.090 0.080 0.080 0.080

Report 5.5 5.5 5.5 5.5 3.0 3.0

Total elapsed time 156.104 36.172 26.929 40.919 28.501 29.853

The bottom line is that for this size problem, there appears little advantage
to RAM except the cost of forming the large A-inverse matrix for IAM. Even
allowing for this, the difference is 5-fold, not 30-fold.

The A-inverse is formed using, by default, a subroutine obtained from Robin. I
had not optimised it but to calculate inbreeding it has a loop across all remai-
ning animals. This searching for animals who are descendants of the current
animal is the expensive process. In version 1.58 I have added a test which
checks whether there are any offspring first. Using it, the ’Getting started’
time reduced to 21.75 seconds (i.e. 8 seconds to form the A-inverse). There
is another A-inverse routine in ASReml invoked by the !OLD qualifier which
does not handle genetic groups but did have the pre-test for calculating con-
tributions to inbreeding. Using it, ’Getting started’ took 21.541 seconds (i.e.
it took about 8 seconds to form the A-inverse). Unfortunately, the old code
did not handle ’selfing’ properly which my test pedigree had some 150 cases
of. This is also now fixed in 1.58.

The preceding results were obtained with version 1.57 (1.58). Below is a com-
parison of various versions of ASReml running the model as in IAM-1.

Version Elapsed time

AIM-1 RAM-1

Jul 1999 173.74 25.85

Nov 2001 157.92 19.92,15.20

Sep 2003[110] 156.94 32.25,28.24

Dec 2003[157] 151.60 30.92

Feb 2004[158] 37.24 29.35

These timings were obtained on an ACER Travelmate with 504 MB RAM
and a 1000 MHz processor. Ir is evident PC timings are somewhat variable
(10I have not explored at the moment. The Nov 2001 version seems to be
reading the data file much faster, probably reflecting less options for decoding
the data.

The IAM runs require more memory than the RAMmodels. If the test machine
had less RAM (e.g. 64MB rather than 504 MB), then paging would slow the
analysis. The RAM model needed S3 (64MB) but the IAM model needed S4
(128MB) to run. If the IAM model omitted the !BLUP 2 qualifier and had
!MAXIT 1 instead, the elapsed time would be increased 5s because of the
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extra processing involved.

Discussion and Conclusion

In chapter 1, I have outlined some matrix results supporting the use of AS-
Reml for fitting a Reduced Animal model. Chapter 2 provides an example
with inbreeding.

RAM is fitted in ASReml using two particular features of the program, weig-
hts and the and() model function. Both of these features are discussed in
the 1999 ASReml Reference manual. The only things that is a little tricky
is the working out of the appropriate weights for the RAM analysis and the
backsolving for the BLUPs of the absorbed progeny.

The former is based on the diagonal elements of the Ainverse, and without
inbreeding, these values are 1 if no parent is known, 4/3 if one parent is known,
16/11 if sire and maternal grandsire is known, 2 if both parents known. With
inbreeding, they can be calculated from the parental inbreeding values or taken
from the A-inverse that includes the progeny. The !DIAG qualifier reports the
latter.

I understand some European colleagues have used the and() function in models
similar to RAM.

It is not possible as things stand to directly estimate the genetic variances
using the RAM model because the variance ratio is used in the weights and
the weights are not differentiated with respect to the ratio. It can of course be
done if the reidual is split into the genetic and residual components and this
is shown.

ASReml has benefitted from a review of the A-inverse algorithm to speed it
up. However, in a sparse matrix implementation, there is little advantage in
using the RAM model per se.

I am interested in understanding what additional time costs can be identified
which made the Treeplan comparison so much faster than the ASReml run,
given I have identified only 20 percent of the difference within ASReml.
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